Python工具箱系列(四)

Python66

上期描述了如何在Windows下安装官方的Python3.8,本期描述如何安装Anaconda。建立Python环境这个话题,为何要大费周章、不厌其烦的叙述呢,主要的原因是:

  • 所有的语言在设计时,都假定运行在一个纯净的环境下,但现实往往不是如此。经常在Windows下会安装多个版本的Python;
  • Python在设计之初,也只设定自己运行在一个纯净的环境下。后期虽然又推出多种混合环境的解决方案,但带来的混乱比解决的问题更多,不用也罢;
  • 环境问题导致的各种怪异现象,对于初学者掌握Python的信心打击巨大;
  • 坚持在一个环境下,只有一个版本的Python是王道,真正符合人生苦短,我用Python的理念。如果混合安装多个版本的Python,会浪费时间与脑力,非常不合算。

综合所述,在安装Anaconda前,记得删除所有的Python版本。除了在控制面板中通过应用管理删除外,还可以使用前文介绍的listary或者everything这个工具,搜索整个操作系统下与Python相关的文件、目录并且删除之,保证尽可能干净的初始环境。

Python工具箱系列(四)

Anaconda是专为数据科学家准备的套餐性质的Python集成开发环境。也就是说,通过安装Anaconda,可以:

  • 获得符合标准的Python3.8解释器;
  • 自动安装一整套与大数据分析、可视化和数学相关的第三方模块;
    [En]

    Automatic installation of a complete set of third-party modules related to big data analysis, visualization and mathematics;*

  • 提供了相对称手的IDE环境。

由于Python的历史原因,部分第三方模块在安装时,需要很复杂的前提条件,例如正确版本的C编译器、头文件、依赖库等,把这些搞明白需要花费大量的时间。而科学家们没有时间甚至没有能力折腾软件的事情,所以Anaconda应运而生,直接提供开箱即用的面向数据科学分析的Python开发能力。当然也带来了一些问题:

  • 安装后,占据的空间较大,约要占2G左右的空间。当然,现在计算机存储资源很丰富,也不算太大的问题。如果安装到笔记本上,还是有些显得臃肿;
输入验证码查看隐藏内容

扫描二维码关注本站微信公众号 Johngo学长
或者在微信里搜索 Johngo学长
回复 svip 获取验证码
wechat Johngo学长