TensorFlow、Keras、Python 版本匹配一览表
兴冲冲装完软件,发现运行不了,查了下资料,发现是TensorFlow、Keras、Python 版本匹配问题。这里提供一个版本匹配清单,需要严格按此标准安装。
版本匹配清单
FrameworkEnv nameDescriptionTensorFlow 2.2tensorflow-2.2TensorFlow 2.2.0 + Keras 2.3.1 on Python 3.7.TensorFlow 2.1tensorflow-2.1TensorFlow 2.1.0 + Keras 2.3.1 on Python 3.6.TensorFlow 2.0tensorflow-2.0TensorFlow 2.0.0 + Keras 2.3.1 on Python 3.6.TensorFlow 1.15tensorflow-1.15TensorFlow 1.15.0 + Keras 2.3.1 on Python 3.6.TensorFlow 1.14tensorflow-1.14TensorFlow 1.14.0 + Keras 2.2.5 on Python 3.6.TensorFlow 1.13tensorflow-1.13TensorFlow 1.13.0 + Keras 2.2.4 on Python 3.6.TensorFlow 1.12tensorflow-1.12TensorFlow 1.12.0 + Keras 2.2.4 on Python 3.6.tensorflow-1.12:py2TensorFlow 1.12.0 + Keras 2.2.4 on Python 2.TensorFlow 1.11tensorflow-1.11TensorFlow 1.11.0 + Keras 2.2.4 on Python 3.6.tensorflow-1.11:py2TensorFlow 1.11.0 + Keras 2.2.4 on Python 2.TensorFlow 1.10tensorflow-1.10TensorFlow 1.10.0 + Keras 2.2.0 on Python 3.6.tensorflow-1.10:py2TensorFlow 1.10.0 + Keras 2.2.0 on Python 2.TensorFlow 1.9tensorflow-1.9TensorFlow 1.9.0 + Keras 2.2.0 on Python 3.6.tensorflow-1.9:py2TensorFlow 1.9.0 + Keras 2.2.0 on Python 2.TensorFlow 1.8tensorflow-1.8TensorFlow 1.8.0 + Keras 2.1.6 on Python 3.6.tensorflow-1.8:py2TensorFlow 1.8.0 + Keras 2.1.6 on Python 2.TensorFlow 1.7tensorflow-1.7TensorFlow 1.7.0 + Keras 2.1.6 on Python 3.6.tensorflow-1.7:py2TensorFlow 1.7.0 + Keras 2.1.6 on Python 2.TensorFlow 1.5tensorflow-1.5TensorFlow 1.5.0 + Keras 2.1.6 on Python 3.6.tensorflow-1.5:py2TensorFlow 1.5.0 + Keras 2.0.8 on Python 2.TensorFlow 1.4tensorflow-1.4TensorFlow 1.4.0 + Keras 2.0.8 on Python 3.6.tensorflow-1.4:py2TensorFlow 1.4.0 + Keras 2.0.8 on Python 2.TensorFlow 1.3tensorflow-1.3TensorFlow 1.3.0 + Keras 2.0.6 on Python 3.6.tensorflow-1.3:py2TensorFlow 1.3.0 + Keras 2.0.6 on Python 2.
附上一段测试程序(鸢尾花分类简化版)
这一段代码不需要准备数据文件,可直接验证是否可以训练模型。
import numpy as np
import keras
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense
train_x = np.array([[1.4, 0.2],
[1.7, 0.4],
[1.5, 0.4],
[2.3, 0.7],
[2.7, 1.1],
[2.6, 0.9],
[4.6, 1.3],
[3.5, 1.0],
[3.9, 1.2]])
train_y = np.array([[1, 0, 0],
[1, 0, 0],
[1, 0, 0],
[0, 1, 0],
[0, 1, 0],
[0, 1, 0],
[0, 0, 1],
[0, 0, 1],
[0, 0, 1]])
model = Sequential()
model.add(Dense(units = 2, input_dim = 2))
model.add(Dense(units = 3, activation = 'softmax'))
model.compile(optimizer = 'adam', loss = 'mse')
model.fit(x = train_x, y = train_y, epochs = 10000)
keras.models.save_model(model, 'iris2.model')
Original: https://blog.csdn.net/quicmous/article/details/124328289
Author: 许野平
Title: TensorFlow、Keras、Python 版本匹配一览表

【入门向】k-means聚类函数详解(基于鸢尾花数据集)【MATLAB】

当推荐系统遇上多模态Embedding

汽车雷达 — 车载ADAS常用中英文对照

AI: 2021 年人工智能前沿科技报告02(更新中……)

人工智能重新定义管理

论文学习–Learning High-Speed Flight in the Wild

基于 NCC/灰度信息 的模板匹配算法(QT + Opencv + C++),10ms内获取匹配结果,部分源码

tensorlfow 卷积操作解释

知识图谱读书笔记1

OpenCV配置教程

python实现语音通话_python 实现语音聊天机器人的示例代码

利用Tensorflow完成人脸识别小程序(一)

音频特征(2):时域图、频谱图、语谱图(时频谱图)

windows10 + Python 3.6+cuda11.2 + cudnn8.1.1.33 + Tensorflow Objection API 环境配置与训练
