A B = C AB = C A B =C
[ a 11 ⋯ a 1 n ⋮ ⋱ ⋮ a m 1 ⋯ a m n ] [ b 11 ⋯ b 1 p ⋮ ⋱ ⋮ b n 1 ⋯ b n p ] = [ c 11 ⋯ c 1 p ⋮ ⋱ ⋮ c m 1 ⋯ c m p ] \begin{bmatrix} a_{11} & \cdots & a_{1n} \ \vdots & \ddots & \vdots \ a_{m1} & \cdots & a_{mn}\end{bmatrix}\begin{bmatrix} b_{11} & \cdots & b_{1p} \ \vdots & \ddots & \vdots \ b_{n1} & \cdots & b_{np}\end{bmatrix}=\begin{bmatrix} c_{11} & \cdots & c_{1p} \ \vdots & \ddots & \vdots \ c_{m1} & \cdots & c_{mp}\end{bmatrix}⎣⎢⎡a 1 1 ⋮a m 1 ⋯⋱⋯a 1 n ⋮a m n ⎦⎥⎤⎣⎢⎡b 1 1 ⋮b n 1 ⋯⋱⋯b 1 p ⋮b n p ⎦⎥⎤=⎣⎢⎡c 1 1 ⋮c m 1 ⋯⋱⋯c 1 p ⋮c m p ⎦⎥⎤
矩阵相乘的5种视角,互相等价
- 常规视角
- c i j = ∑ k = 1 n a i k b k j c_{ij} = \sum_{k=1}^n a_{ik}b_{kj}c i j =∑k =1 n a i k b k j
- 通过矩阵和向量乘法
- 右乘:C 的每个列向量c j \bold{c}j c j 由A的列向量a k , 1 ≤ k ≤ n \bold{a}_k,1\le k\le n a k ,1 ≤k ≤n的线性组合构成 c j = ∑ k = 1 n b k j a k \bold{c}_j = \sum{k=1}^n b_{kj} \bold{a}_k c j =∑k =1 n b k j a k
- 左乘:C 的没个行向量c i \bold{c}i c i 由B的行向量b k , 1 ≤ k ≤ p \bold{b}_k,1\le k\le p b k ,1 ≤k ≤p的线性组合构成c i = ∑ k = 1 p a i k b k \bold{c}_i=\sum{k=1}^pa_{ik}\bold{b}_k c i =∑k =1 p a i k b k
- A B = ∑ i ( c o l u m n i O f A ) ( r o w i O f B ) AB = \sum_i (column_iOf A)(row_iOf B)A B =∑i (c o l u m n i O f A )(r o w i O f B )
- By Blocks
左逆矩阵(Left Inverse):
A − 1 A = I A^{-1}A = I A −1 A =I
右逆矩阵(Right Inverse)
A A − 1 = I AA^{-1}=I A A −1 =I
Dependence:
向量V 1 , V 2 , . . , V n V_1,V_2,..,V_n V 1 ,V 2 ,..,V n ,存在组合非全零实数c 1 , c 2 , . . . , c n c_1, c_2,...,c_n c 1 ,c 2 ,...,c n ,满足∑ i = 1 n c i V i = 0 \sum_{i=1}^nc_iV_i = 0 ∑i =1 n c i V i =0,则称向量线性相关。
矩阵行列式的三个性质:
- d e t ( I ) = 1 det(I) = 1 d e t (I )=1
- Exchange rows , reverse sign of determinant
- Linear for each row
∣ t ∗ a t ∗ b c d ∣ = t ∗ ∣ a b c d ∣ \left|\begin{array}{cccc} ta & tb \ c & d \ \end{array}\right| = t * \left|\begin{array}{cccc} a & b \ c & d \ \end{array}\right|∣∣∣∣t ∗a c t ∗b d ∣∣∣∣=t ∗∣∣∣∣a c b d ∣∣∣∣
∣ a + a ′ b + b ′ c d ∣ = ∣ a b c d ∣ + ∣ a ′ b ′ c d ∣ \left|\begin{array}{cccc} a + a' & b + b' \ c & d \ \end{array}\right| = \left|\begin{array}{cccc} a & b \ c & d \ \end{array}\right| + \left|\begin{array}{cccc} a' & b' \ c & d \ \end{array}\right|∣∣∣∣a +a ′c b +b ′d ∣∣∣∣=∣∣∣∣a c b d ∣∣∣∣+∣∣∣∣a ′c b ′d ∣∣∣∣
由此三个性质推导出行列式的以下性质:
- two equal rows => det = 0
- subtract l × r o w i l\times row_i l ×r o w i from r o w j row_j r o w j , det does not change.
∣ a b c − l ∗ a d − l ∗ b ∣ = ∣ a b c d ∣ + ∣ a b − l ∗ a − l ∗ b ∣ \left|\begin{array}{cccc} a & b \ c -la& d-lb \ \end{array}\right| = \left|\begin{array}{cccc} a & b \ c & d \ \end{array}\right| + \left|\begin{array}{cccc} a & b \ -la & -lb \ \end{array}\right|∣∣∣∣a c −l ∗a b d −l ∗b ∣∣∣∣=∣∣∣∣a c b d ∣∣∣∣+∣∣∣∣a −l ∗a b −l ∗b ∣∣∣∣
= ∣ a b c d ∣ − l ∗ ∣ a b a b ∣ = ∣ a b c d ∣ =\left|\begin{array}{cccc} a & b \ c & d \ \end{array}\right| -l * \left|\begin{array}{cccc} a & b \ a & b \ \end{array}\right| = \left|\begin{array}{cccc} a & b \ c & d \ \end{array}\right|=∣∣∣∣a c b d ∣∣∣∣−l ∗∣∣∣∣a a b b ∣∣∣∣=∣∣∣∣a c b d ∣∣∣∣
- Row of zeros => det = 0
∣ 0 ∗ a 0 ∗ b c d ∣ = 0 ∗ ∣ a b c d ∣ = 0 \left|\begin{array}{cccc} 0a & 0b \ c & d \ \end{array}\right| = 0 * \left|\begin{array}{cccc} a & b \ c & d \ \end{array}\right| = 0 ∣∣∣∣0 ∗a c 0 ∗b d ∣∣∣∣=0 ∗∣∣∣∣a c b d ∣∣∣∣=0
- Trianglar matrix =>d e t = d 1 ∗ d 2 ∗ d 3... d n det = d1d2d3...dn d e t =d 1 ∗d 2 ∗d 3 ...d n
∣ d 1 ⋯ ⋯ ⋯ ⋯ 0 d 2 ⋯ ⋯ ⋯ 0 0 d 3 ⋯ ⋯ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ d n ∣ = ∏ i = 1 n d i \left|\begin{array}{cccc} d1 & \cdots & \cdots & \cdots & \cdots\ 0 & d2 & \cdots & \cdots & \cdots\ 0 & 0 & d3 & \cdots & \cdots \ \vdots & \vdots & \vdots & \vdots & \vdots \ 0 & 0 & 0 & \cdots & dn \ \end{array}\right| = \prod_{i=1}^n di ∣∣∣∣∣∣∣∣∣∣∣d 1 0 0 ⋮0 ⋯d 2 0 ⋮0 ⋯⋯d 3 ⋮0 ⋯⋯⋯⋮⋯⋯⋯⋯⋮d n ∣∣∣∣∣∣∣∣∣∣∣=i =1 ∏n d i
- det = 0 exactly when A is singular(d e t ≠ 0 det\ne 0 d e t =0 when A is invertible)
- d e t ( A B ) = d e t ( A ) d e t ( B ) det(AB) = det(A)det(B)d e t (A B )=d e t (A )d e t (B )
d e t A − 1 = ( d e t A ) − 1 det A^{-1} = (det A)^{-1}d e t A −1 =(d e t A )−1
d e t A 2 = ( d e t A ) 2 det A^2 = (det A)^2 d e t A 2 =(d e t A )2
d e t 2 A = 2 n d e t A det 2A = 2^n det A d e t 2 A =2 n d e t A - d e t A T = d e t A detA^T = det A d e t A T =d e t A
d e t A T = d e t U T L T = d e t U d e t L = d e t L U = d e t A det A^T = det U^TL^T = det U det L = det LU = det A d e t A T =d e t U T L T =d e t U d e t L =d e t L U =d e t A
行列式的定义
d e t ( A ) = ∑ n ! a 1 α a 2 β a 1 γ . . . a n ω det(A) = \sum_{n!} a_{1\alpha}a_{2\beta}a_{1\gamma}...a_{n\omega}d e t (A )=n !∑a 1 αa 2 βa 1 γ...a n ω
( α , β , γ , . . . , ω ) (\alpha,\beta,\gamma,...,\omega)(α,β,γ,...,ω)is permutation of (1,2,3,...,n)
Exist a none zero vector X, satisfiy A x = 0 Ax = 0 A x =0,then A is singular.
定义:A是n阶矩阵,若实数λ \lambda λ和n维非零向量α \alpha α满足A α = λ α A\alpha = \lambda\alpha A α=λα,则称λ \lambda λ为A的特征值,α \alpha α为A的特征向量。
-
If A is singular, the λ = 0 \lambda=0 λ=0 is an eigenvalue.
-
Trace:∑ i λ i = ∑ a i i \sum_i \lambda_i = \sum a_{ii}∑i λi =∑a i i
- Determinant :d e t = ∏ i λ i det = \prod_i \lambda_i d e t =∏i λi
- 对称或近似对称,特征值是实数,否则可能是复数。
对于对称举矩阵
- the eigenvalues are also Real
- the eigenvectors are Perpendicular
Usual case:
A = S Λ S − 1 A = S\Lambda S^{-1}A =S ΛS −1
Symmetric case:
A = Q Λ Q − 1 = Q Λ Q T A=Q\Lambda Q^{-1} = Q\Lambda Q^T A =Q ΛQ −1 =Q ΛQ T
定义:矩阵的奇异值分解是指,将一个非零的m × n m\times n m ×n实矩阵A , A ∈ R m × n A,A\in R^{m\times n}A ,A ∈R m ×n,表示为以下三个实矩阵乘积形式的运算,即进行矩阵的因子分解:
A = U Σ V T A= U\Sigma V^T A =U ΣV T
其中U U U是m m m阶正交矩阵,V V V是n n n阶正交矩阵,Σ \Sigma Σ是由降序排列的非负的对角线元素组成的m × n m\times n m ×n矩形对角阵,满足
U U T = I V V T = I Σ = d i a g ( σ 1 , σ 2 , . . . , σ p ) UU^T=I\VV^T=I\ \Sigma=diag(\sigma_1,\sigma_2,...,\sigma_p)U U T =I V V T =I Σ=d i a g (σ1 ,σ2 ,...,σp )
σ 1 ≥ σ 2 ≥ . . . ≥ σ p ≥ 0 \sigma_1\ge \sigma_2\ge ...\ge\sigma_p\ge 0 σ1 ≥σ2 ≥...≥σp ≥0
p = m i n ( m , n ) p=min(m,n)p =m i n (m ,n )
U Σ V T U\Sigma V^T U ΣV T称为矩阵A的奇异值分解(singular value decomposition),σ i \sigma_i σi 称为矩阵A的奇异值(singular value),U U U的列向量称为左奇异向量,V的列向量称为右奇异向量。
A = U Σ V T A=U\Sigma V^T A =U ΣV T
其中U U U是m阶正交矩阵,V V V是n阶正交矩阵,Σ \Sigma Σ是m × n m\times n m ×n矩形对角矩阵,其对角线元素非负,且降序排列。
Original: https://blog.csdn.net/gaofeipaopaotang/article/details/123776108
Author: jony0917
Title: Linear Algebra (一)

百度云语音合成 Python SDK

基于 Anaconda pycharm windows 的 tensorflow 2.6.0 keras 2.6.0 CUDA 11.2 cuDNN 8.1 环境搭建

第一章:opencv、pytorch、tensorflow、paddlex等环境配置大全总结【图像处理py版本】

古诗词与代码之间不得不说的二三事。

本手、妙手、俗手?我用AI写2022高考全国作文题,会被看出来?

Python划分图像文件夹为训练集、验证集和测试集——split-folders

Python — 图像处理—PIL库的使用

实时音频编解码之十七 Opus解码 SILK解码

安装tensorflow/keras

数据挖掘与数据分析项目链家租房数据(三)进一步探索与归纳

【TVM系列二】TVM介绍

11_BERT(预训练Transformer模型)

YOLOv5行人检测

ubuntu20.04安装VITIS_HLS2021.2配置OPENCV4.4和VITIS_LIBRARIES(详细版)
