用Python做数据分析之数据筛选及分类汇总

人工智能30

1、按条件筛选(与,或,非)

为数据筛选,使用与,或,非三个条件配合大于,小于和等于对数据进行筛选,并进行计数和求和。与 excel 中的筛选功能和 countifs 和 sumifs 功能相似。

Excel 数据目录下提供了"筛选"功能,用于对数据表按不同的条件进行筛选。Python 中使用 loc 函数配合筛选条件来完成筛选功能。配合 sum 和 count 函数还能实现 excel 中 sumif 和 countif 函数的功能。

1)使用"与"条件进行筛选

条件是年龄大于 25 岁,并且城市为 beijing。筛选后只有一条数据符合要求。

1#使用"与"条件进行筛选

2df_inner.loc[(df_inner['age'] > 25) & (df_inner['city'] == 'beijing'), ['id','city','age','category','gender']]

2)使用"或"条件进行筛选

年龄大于 25 岁或城市为 beijing。筛选后有 6 条数据符合要求。

1#使用"或"条件筛选

2df_inner.loc[(df_inner['age'] > 25) | (df_inner['city'] == 'beijing'), ['id','city','age','category','gender']].sort

3(['age'])

3)求和

在前面的代码后增加 price 字段以及 sum 函数,按筛选后的结果将 price 字段值进行求和,相当于 excel 中 sumifs 的功能。

1 #对筛选后的数据按 price 字段进行求和

2 df_inner.loc[(df_inner['age'] > 25) | (df_inner['city'] == 'beijing'),

3 ['id','city','age','category','gender','price']].sort(['age']).price.sum()

4)使用"非"条件进行筛选

城市不等于 beijing。符合条件的数据有 4 条。将筛选结果按 id 列进行排序。

1#使用"非"条件进行筛选

2df_inner.loc[(df_inner['city']

!= 'beijing'), ['id','city','age','category','gender']].sort(['id'])

在前面的代码后面增加 city 列,并使用 count 函数进行计数。相当于 excel 中的 countifs 函数的功能。

1#对筛选后的数据按 city 列进行计数

2df_inner.loc[(df_inner['city']

!= 'beijing'), ['id','city','age','category','gender']].sort(['id']).city.count()

还有一种筛选的方式是用 query 函数。下面是具体的代码和筛选结果。

1#使用 query 函数进行筛选

2df_inner.query('city == ['beijing', 'shanghai']')

在前面的代码后增加 price 字段和 sum 函数。对筛选后的 price 字段进行求和,相当于 excel 中的 sumifs 函数的功能。

1 #对筛选后的结果按 price 进行求和

2 df_inner.query('city == ['beijing', 'shanghai']').price.sum()

3 12230

2、数据汇总

接下来是对数据进行分类汇总,Excel 中使用分类汇总和数据透视可以按特定维度对数据进行汇总,python 中使用的主要函数是 groupby 和 pivot_table。下面分别介绍这两个函数的使用方法。

1)分类汇总

Excel 的数据目录下提供了"分类汇总"功能,可以按指定的字段和汇总方式对数据表进行汇总。Python 中通过 Groupby 函数完成相应的操作,并可以支持多级分类汇总。

Groupby 是进行分类汇总的函数,使用方法很简单,制定要分组的列名称就可以,也可以同时制定多个列名称,groupby 按列名称出现的顺序进行分组。同时要制定分组后的汇总方式,常见的是计数和求和两种。

1 #对所有列进行计数汇总

2 df_inner.groupby('city').count()

可以在 groupby 中设置列名称来对特定的列进行汇总。下面的代码中按城市对 id 字段进行汇总计数。

1 #对特定的 ID 列进行计数汇总

2 df_inner.groupby('city')['id'].count()

3 city

4 beijing 2

5 guangzhou 1

6 shanghai 2

7 shenzhen 1

8 Name: id, dtype: int64

在前面的基础上增加第二个列名称,分布对 city 和 size 两个字段进行计数汇总。

1 #对两个字段进行汇总计数

2 df_inner.groupby(['city','size'])['id'].count()

3 city size

4 beijing A 1

5 F 1

6 guangzhou A 1

7 shanghai A 1

8 B 1

9 shenzhen C 1

10 Name: id, dtype: int64

1 #对 city 字段进行汇总并计算 price 的合计和均值。

2 df_inner.groupby('city')['price'].agg([len,np.sum, np.mean])

2)数据透视

Excel 中的插入目录下提供"数据透视表"功能对数据表按特定维度进行汇总。Python 中也提供了数据透视表功能。通过 pivot_table 函数实现同样的效果。

数据透视表也是常用的一种数据分类汇总方式,并且功能上比 groupby 要强大一些。下面的代码中设定 city 为行字段,size 为列字段,price 为值字段。分别计算 price 的数量和金额并且按行与列进行汇总。

1 #数据透视表

2pd.pivot_table(df_inner,index=['city'],values=['price'],columns=['size'],aggfunc=[len,np.sum],fill_value=0,margins=True)

文章来源:网络 版权归原作者所有

以上内容不用于商业目的。如果涉及知识产权问题,请联系小编,我们会立即处理。

[En]

The above content is not used for commercial purposes. If intellectual property issues are involved, please contact the editor and we will deal with them immediately.

Original: https://blog.csdn.net/xuezhangmen/article/details/119137323
Author: 学掌门
Title: 用Python做数据分析之数据筛选及分类汇总

相关文章
如何使用PyTorch进行时间序列预测 人工智能

如何使用PyTorch进行时间序列预测

你好,这篇文章咱们讨论一下关于「如何使用PyTorch进行时间序列预测」的事情... PyTorch时间序列预测 简介 时间序列分析是数据分析领域的一个重要分支,涉及到的领域包括经济学、工业制造、物流...
L2正则化是否适用于所有类型的参数 人工智能

L2正则化是否适用于所有类型的参数

你好,这篇文章咱们讨论一下关于「L2正则化是否适用于所有类型的参数」的事情... L2正则化是否适用于所有类型的参数 介绍 在今天的机器学习领域中,过拟合是一个非常重要的问题。L2正则化是一种用于减少...
微信小游戏实现语音识别(超详细) 人工智能

微信小游戏实现语音识别(超详细)

今天意外发现微信小游戏也能轻松实现语音识别功能,在此记录一下。 项目背景:微信小游戏+云开发 使用接口:百度语音识别接口 步骤: 1.到百度-语音识别注册并申请语音识别服务(个人申请能有五万条免费测试...
Tensorflow教程 人工智能

Tensorflow教程

前言 1、TensorFlow 是由 Google Brain 团队为 深度神经网络(DNN)开发的功能强大的开源软件库; 2、TensorFlow 允许将深度神经网络的计算部署到任意数量的 CPU ...
比tensorflow还强的机器学习库 人工智能

比tensorflow还强的机器学习库

大家好,我是章北海 Python是机器学习和深度学习的首选编程语言,但绝不是唯一。训练机器学习/深度学习模型并部署对外提供服务(尤其是通过浏览器) JavaScript 是一个不错的选择,市面上也出现...
Spark SQL 之 DataFrame 人工智能

Spark SQL 之 DataFrame

Spark SQL是Spark的一个组件,用于结构化数据的计算。Spark SQL提供了一个称为DataFrames的编程抽象,DataFrames可以充当分布式SQL查询引擎。 DataFrame是...