作者介绍
@小宇
专注流量数据分析,就职过360和58。
"数据人创作者联盟"成员
00 导语
最近,我们经常看到关于数据分析师职业发展瓶颈的讨论,观点不一。“你想选择一个数据分析岗位吗?”、“数据分析未来的发展渠道是什么?”这样的问题经常被问到。今天我们要谈谈数据分析的职业道路。
[En]
Recently, we have often seen discussions about the bottleneck of the career development of data analysts, with different views and opinions. "do you want to choose a data analysis post?" , "what is the future development channel of data analysis?" Such questions are often asked. Today we're going to talk about the career path of data analysis.
因此,我们首先需要明确分析师在日常工作中的组织架构和工作职责。工作职责是什么?从部门职责的角度来看,数据分析大致分为三类:业务分析、业务分析和中台分析。
[En]
So first of all, we need to clarify the organizational structure and job responsibilities of analysts in their daily work. What are the job responsibilities? From the point of view of department-responsibility, data analysis is roughly divided into three categories: business analysis, business analysis and mid-Taiwan analysis.
各种分析型岗位之间都有间隔,而且相互关联,那么职业发展的渠道是什么?
[En]
There are intervals between all kinds of analytical positions and they are related to each other, so what is the career development channel?
01 中台分析
数据中心本身就是一个企业数据共享和承载能力的平台;这个组织不代表一套系统或标准化产品,而是资源整合、集中分配、整合和效率。在这样的组织中,分析师的角色更多的是梳理、提炼和整合。让所有的商家在统一的语言和统一的工具基础上进行合作。
[En]
The data center itself is a platform for enterprise data sharing and capacity taking; this organization does not represent a set of systems or standardized products, but resource integration, centralized allocation, integration and efficiency. In such an organization, the role of analysts is more to sort out, refine and integrate. Let all businesses cooperate on the basis of unified "language" and unified tools.
因此数据中台在数据中台做分析,有利于打基础、提升专业技能、熟悉全局结构,对于初级分析而言这样的岗位更合适。而对于中、高级分析师来说,如果在数据中台与业务配合并没有很深入,且没有晋升管理的机会,就会容易遇到瓶颈,成为了资深sql boy,向前走一步很难。
处在这个阶段的同学有两个破局的办法:
(1)转做业务分析,中台的短板就是不了解业务,很多中台的同学可能会BP到业务中,但受架构的限制能够深入到业务中对业务了如指掌的少之又少,补上短板即可持续纵深发展;
(2)转行数据产品,在数据中台与数据产品合作的机会很多,也会亲身经历经历很多数据产品的项目,那么耳濡目染的就会get相关技能和思维;
02 业务分析
业务分析的好处是熟悉业务,所以在日常工作中,分析师与产品、与运营、甚至与数据开发之间都会出现边界问题。有些同学认为,明确责任不越界是理想的工作环境,但我个人持相反态度。有机会打破界限是很难得的。
[En]
The advantage of business analysis is to be familiar with the business, so there will be boundary problems between analysts and products, with operations, and even with data development in daily work. Some students think that a clear responsibility does not cross the boundary is the ideal working environment, but I personally hold the opposite attitude. It is rare to have the opportunity to break the boundary.
业务团队中的每个人都应该为总体目标做出贡献,所以作为分析师,我们首先应该分解业务目标和项目目标。了解要实现这样的目标需要什么依赖吗?每个依赖项的状态是什么?推广的手段是什么?在考核期间能否按时完成?前后联动,辅助决策。此外,在业务环节的核心环节,分析员需要参与其中,发现问题、分析问题、协助解决问题。
[En]
Everyone in the business team should contribute to the overall goals, so as an analyst, we should first disassemble the business goals and project goals. Understand what dependence is needed to achieve such a goal? What is the status of each dependency? What are the means of promotion? Can it be achieved on time during the examination period? Linkage front and rear to assist decision-making. In addition, in the core link of the business link, analysts need to participate in it, find problems, analyze problems, and assist in solving problems.
听起来上面的工作流跟很多同学心目中的分析师的工作不太一样,听起来像产品运营?pmo?策略产品?其实,这才是业务分析的理想态,不仅仅产出数据结果、分析报告、分析实验,而是掌握节奏推动发展。长期的发展来看,除了管理的晋升,业务分析还可以成长为某个领域的数据科学专家。拿广告业务的分析来说,当面对广告投放这样一个超长链路且容错率较低的业务体系,专家应该给出每个环节问题诊断的通用方法及评价的度量标准。
中高级业务分析师在实际工作中会遇到辅助工作时间长、晋升渠道窄的问题。由于不同的管理者对商业分析的岗位不同,商业分析专业学生的能力也不同,当商业分析没有被赋予一定的话语权或者能力得不到认可时,我们只能做一些辅助工作。随着时间的推移,它将达到瓶颈。
[En]
Middle and senior business analysts will encounter the problems of long-term auxiliary work and narrow promotion channels in practical work. Because different managers have different positions on business analysis, and the abilities of business analysis students are also different, when business analysis is not given a certain say or ability can not be recognized, we can only do some auxiliary work. Over time, it will reach the bottleneck.
处在这个阶段的同学有两个破局的办法:
(1)在管理对业务分析的职能较为清晰的情况下,深入业务中多听多看多问,提升自身的业务能力,朝着数据科学专家的方向努力;
(2)在管理对业务分析的职能不清晰的情况下,可以考虑转行成为策略产品,打破边界,落地自己的分析结论;
(3)多年的业务分析也可以考虑转行做商业分析,扎实的专业基础,和多年业务决策经验也成就了一定的战略眼光,此时不妨提升一下高度。
03 商业分析
业务分析是一个需要丰富工作经验的职位。刚进入职场的业务分析师大多会在各种咨询项目中积累经验。公开招聘软件,很多业务分析岗位要求都会在10年以上的工作。因为业务分析需要对市场有足够的了解,有很大的洞察力,有一定的商业敏锐性,有了这些能力,我们才能提高集团/事业部的财务业绩输出,具备战略管理的能力,提高企业的运营效率。而这些能力是通过积累一定的工作经验来实现的。
[En]
Business analysis is a position that requires rich work experience. Business analysts who are new to the workplace will mostly accumulate experience in various consulting projects. Open recruitment software a lot of business analysis job requirements will be more than 10 years of work. Because business analysis requires sufficient understanding of the market, great insight, and a certain degree of business acumen, with these capabilities, we can improve the financial performance output of the group / business department, have the ability of strategic management, and improve the operational efficiency of the enterprise. and these capabilities are achieved by the accumulation of certain work experience.
对于有一定工作经验、对现状不满意的资深分析师学员来说,转变思维,尝试业务分析,是一个很好的发展方向。横向来看,商业分析并不局限于互联网行业,其他行业(如金融)也有相应的岗位;纵向而言,商业分析工作培育的战略眼光,可以帮助你成为一名不封顶的投资人和创业者。
[En]
For senior analyst students who have some work experience and are not satisfied with the status quo, it is a good development direction to change their thinking and try business analysis. Horizontally, business analysis is not limited to the Internet industry, other industries (such as finance) also have corresponding positions; vertically, the strategic vision cultivated by business analysis work can help you become an investor and entrepreneur without capping.
前几天我在获取一个免费学习资源的时候,负责付费课程转化的小姐姐对于数据分析这个岗位有这样一个评价:"数据分析,相对来说比较传统的,日常的话一般就是做报表,业务需求的话是采集分析相关的数据模型,撰写特定的需求报告,工作中主要用到的一般是Python SQL或者是Excel等,相对技术比较单一,前几年的时候比较火,但是近几年发展方面不是很好,容易遇到瓶颈。"我相信这不仅仅是她想要卖给我课程的话术,也是很多人对分析师的刻板印象。关于技术点,我想说分析师或者数据科学都不是拼技术的岗,重点在于以业务为导向,通过恰当的方法、使用工具或技术能力,解决业务问题、影响决策并推动决策应用落地。
希望这篇文章能帮助各地的学生在迷茫的时期,相信自己,坚守内心,选择最适合自己发展的方向。
[En]
I hope this article can help students everywhere in the confused period, believe in themselves, stick to their hearts, and choose the most suitable direction for their own development.
Original: https://blog.csdn.net/weixin_49880348/article/details/123339296
Author: 数据掘金者
Title: 数据分析师的职业发展

使用Yolov5训练自己的模型

【AI论文精粹】人工解释;类脑计算和神经形态硬件;时间语言基础;混合脑机接口系统的应用

imdb_reviews电影评论数据集的神经网络

2022年,校招计算机视觉算法岗,还要继续all in吗?

QT实现语音识别功能

主动降噪耳机哪个牌子好用?人气降噪耳机排行榜10强!

医学影像半监督分割–基于数据扰动

最终篇!AAAI 2022值得读的NLP论文盘点

语音信号预处理5——从1-4完整走一遍

基于TensorFlow2.x卷积神经网络的智能小车寻迹

在Jetson Xavier NX上运行VINS-Mono

『开发技巧』MacbookM1芯片深度学习环境配置最全教程:简明安装开发TensorFlow与PyTorch

CRF条件随机场

【TensorFlow2.0】高级API中关于tf.keras.layers.Conv2D()函数的参数详细说明(建议保存)
