疫情期间,数字时代加速,大多数企业还没有完全做好数字化转型的准备,就被甩在了后面。
[En]
During the epidemic, the digital age accelerated, and most enterprises were left behind before they were fully ready for the digital transformation.
随着数字经济成为社会经济中心的一部分,数据已经成为事实上的社会组成部分。借助海量数据,企业可以分析几乎所有的商业数据,将之前想象的商业模式变成现实。
[En]
As the digital economy has become a part of the socio-economic center, data has become a de facto social component. With the help of a large amount of data, enterprises can analyze almost all business data and turn the previously imagined business model into reality.
什么是数据可视化
1.数据可视化的定义
数据和可视化能够互相补全。
过去,人们在分析一个企业的发展时只能依靠文本,往往将一个简单的企业业务分析变成几页甚至几十页的数字内容,不仅容易产生错误和遗漏,而且浪费了所有管理人员的时间来分析数字。
[En]
In the past, people can only rely on text when analyzing the development of an enterprise, and often turn a simple enterprise business analysis into several pages or even dozens of pages of digital content, which is not only easy to produce errors and omissions, but also waste all managers' time on analyzing numbers.
数据报表 - 派可数据
人们从这点出发,发明了数据可视化,利用 人类大脑更善于处理图像信息的特点,透过图形化的手段,用图表清晰有效地传达和沟通信息。把以往庞杂、繁乱的数据报表转化成简洁明了的可视化图表。
数据可视化制作的图表不再像传统的分析方案那样由数据和文本组成,而是将人类难以处理的所有数据和文本集成到一个直观的图表中,简单有效地展示企业的业务信息。挖掘出发展背后隐藏的价值。
[En]
The chart made by data visualization is no longer composed of data and text like the traditional analysis scheme, but integrates all the data and text that are difficult for human beings to deal with into an intuitive chart to simply and effectively show the business information of the enterprise. dig out the hidden value behind the development.
2.数据可视化与数字化转型的关系
为什么说数据可视化是数字化转型的关键,就是因为 数据可视化不仅仅是分析工具,更是一种能够让企业通过数据视角来看待世界的方式。
在传统的商业模式中,由于企业发展和管理难以量化,更多地依靠经验来决策,容易产生风险,探索新的发展模式也不容易。
[En]
In the traditional business model, because it is difficult for enterprises to quantify their development and management, they rely more on experience to make decisions, which is easy to produce risks, and it is not easy to explore new development models.
从业务数据到数据仓库 - 派可数据
信息化建设初步完成后,企业开始存储业务信息,这些信息以数据的形式存储在数据仓库中。因此,对于当下的企业来说,以数据为业务核心,以可视化为转型手段,能够最大程度地帮助企业完成数字化转型,真正完成新时代的转型。
[En]
After the initial completion of the information construction, enterprises begin to store business information, which is stored in the data warehouse in the form of data. Therefore, for current enterprises, * data as the business core and visualization as the means of transformation * , it can help enterprises to complete the digital transformation to the greatest extent and truly complete the transformation in the new era.
数据可视化有什么用
和纯粹的数据相比, 数据可视化可以让数据更容易被人消化,而且在可视化分析中,不同业务信息之间的关系更加清晰,保证了管理人员第一时间看到分析图表示能够直接关注到关键信息。
数据可视化可以轻松体现出业务发展的状况。在实际的数据分析工作中,经常会遇到管理人员需求企业业务趋势的分析方案,满是数字的数据报表很难展现这一过程,可视化数据报表却只需要折线图、柱形图等就可以轻松实现。
生产数据趋势 - 派可数据
企业管理者可以通过数据可视化来查看业务执行情况,然后对发现的问题进行回顾和总结。数据可视化可以很容易地区分不同业务数据之间的逻辑关系,因为各种图表可以相互关联。
[En]
Enterprise managers can view business execution through data visualization, and then review and summarize the problems found. * data visualization can easily distinguish the logical relationships between different business data because various charts can be related to each other.*
数据可视化可以完成更加深入的分析。可视化所支持的图表类型非常丰富,还可以使用钻取将不同的图表之间产生联系,一层层递进到业务深层,让分析人员可以直接在一张图表上完成各种复杂的分析。
数据可视化工具有哪些
现阶段,数字化转型才刚刚开始,能够完成数据可视化的工具还很有限。一般来说,可视化工具可以根据不同的方式分为个人可视化工具、企业可视化工具,或者代码可视化工具和低代码可视化工具。
[En]
At this stage, the digital transformation has just started, and the tools that can complete data visualization are still limited. Generally speaking, visualization tools can be divided into * personal visualization tools, enterprise visualization tools, or code visualization tools and low code visualization tools * according to different ways.
个人可视化代码图表 - Echarts
可视化工具的优点就是更加的轻量化,甚至可以直接通过在线网页完成简单图表的制作,但一般需要编写代码,只能由掌握IT技术的员工使用,而且必须通过手动输入数据的方式制作图表,导出图表时一般也会有各种限制,比如水印、限制组件、设置上限等等。
商业智能BI功能则完善得多,也是最受企业欢迎的可视化分析系统,它可以 直接连接企业的业务数据库,把这些业务数据经过ETL处理之后存放到统一的数据仓库中。
商业智能BI大屏 - 派可数据
当需要使用时,可以直接从数据仓库加载数据,节省了大量查找数据的时间,实现了一定程度的自动化。操作员只需要简单的拖放就可以制作各种复杂的图表。
[En]
When you need to use it, you can load data directly from the data warehouse, saving a lot of time to find data and achieve a certain degree of automation. Operators only need * simple drag and drop * to make a variety of complex charts.
怎么做数据可视化
1.确认需求
企业在进行数据可视化分析之前必须先明确需求。
数据可视化是为了解决问题,所以在实际生产和分析过程中,必须紧跟企业业务流程,了解业务指标及其所属的专业方向,最大限度地提高数据分析的准确性。提高海图显示信息质量。
[En]
Data visualization is made to solve problems, so in the process of actual production and analysis, we must closely follow the enterprise business process, understand business indicators and what professional direction they belong to, and maximize the accuracy of data analysis. improve the quality of chart display information.
业务结合需求 - 派可数据
在收到数据可视化要求后,首先要知道图表完成后的受众是谁,对项目进行初步规划,找出要解决的问题、要看到的信息和重点。
[En]
After receiving the data visualization requirements, we must first know who the audience is after the completion of the chart, make a preliminary planning plan for the project, and find out the problems to be solved, the information we want to see and the key points.
如果可以,最好再次对接需求对象,以确保规划没有问题。这里必须引起注意。如果规划的数据方向不是对方想要的,当时的努力只是浪费你的时间和精力。它甚至可能被要求从头开始。
[En]
If you can, it is best to dock with the demand object again to make sure that there is no problem with the planning. Attention must be paid here. If the data direction of the planning is not what the other party wants, the efforts at that time are just a waste of your time and energy. it may even be asked to start all over again.
2.准备数据
数据可视化,永远不忘数据。再好的前期规划,再紧密的业务指标和需求关系,没有数据也分析不了什么。
[En]
Data visualization, never forget the data. No matter how good the pre-planning is, no matter how close the relationship between business indicators and requirements is, you can't analyze anything without data.
商业智能BI可视化分析流程 - 派可数据
数据决定了你图表可以展现的信息,也决定了你要进行的分析流程,所以一定要提前到数据仓库中查看是否有自己需要的业务数据。如果没有就要及时寻找,看看对方是否能够临时填报、补录数据,增加数据的源头。
下一步是将确认的数据与之前计划的指标进行核对,将不同的数据关联起来,思考可能用于数据分析的关键信息,并将排序后的数据转换为替代形式。
[En]
The next step is to check the confirmed data with the previously planned indicators, associate the different data, think about the key information that may be used in data analysis, and put the sorted data into an alternate form.
3.选择图表
图表的选择直接关系到可视化的呈现效果,一个合适的图表能够把数据之间的联系转化为直观的信息,相反错误的图表可能会将需求对象引向错误的方向。
季度销售数量趋势 - 派可数据
数据可视化分析师必须了解所有主流图表类型,知道每个图表适合哪种分析,以及可以显示哪种类型的信息。例如,折线图、条形图等,可以很容易地显示事物的趋势。但如果你在饼图上显示一段时间内销售量的趋势,那么这个图表就没有任何意义了。
[En]
Data visualization analysts must understand all the mainstream chart types, know what kind of analysis each chart is suitable for, and which type of information can be displayed. For example, line charts, bar charts, etc., can easily show the trend of things. But if you show the trend of sales volume over a certain period of time on the pie chart, then this chart does not make any sense.
4.数据可视化分析
在数据分析的过程中,很多新手会产生误解,经常会在各种可视化图表上填上几个屏幕,以为所有的信息都能直观地展现给用户。事实上,用户并不需要那么多内容,他们倾向于一目了然、关键信息一目了然的内容设计,而不是复杂的信息展示。
[En]
In the process of data analysis, many novices will have a misunderstanding, often fill a variety of visual charts with several screens, thinking that all the information can be intuitively displayed to the user. In fact, users do not need that much content, and they tend to prefer content design that is clear at a glance and see key information at a glance rather than complex information display.
商业智能BI - 派可数据
此外,在整个可视化图表页面中,颜色不宜过于丰富,颜色最好不要过于鲜艳,将色彩对比度较强的颜色放在关键信息上,以清晰的逻辑呈现变化,突出重点部分。让用户有更好的体验,这是他们最想看到的。
[En]
In addition, in the whole visual chart page, the color should not be too rich, and the color had better not be too bright, put the color with strong color contrast on the key information, present the change with clear logic, and highlight the key parts. so that users have a better experience, this is what they most want to see.
最后,回到数据分析本身,作为数字化转型的必要手段,分析师可以选择将自己的信息思维从业务逻辑附加到完成的可视化图表上,帮助用户更好地辨别图表的含义。
[En]
Finally, back to the data analysis itself, as a necessary means of digital transformation, analysts can choose to attach their own information thinking from the business logic to the finished visual chart to help users better distinguish the meaning of the chart.
Original: https://blog.csdn.net/weixin_44958787/article/details/124022533
Author: 派可数据BI可视化
Title: 天天在做的数据可视化,才是企业数字化转型的关键

tensorflow2.4使用GooleNet实现识别植物花朵图像项目

嵌入式端音频开发(Unisound篇)之 7.1 蜂鸟M离线语音芯片简介

目标检测算法——YOLOV7——详解

OpenCV入门函数API解析

AI听曲识歌!哼曲、口哨吹,都能秒识! ⛵

不要停止预训练实战-Roberta与Albert

华为游戏服务SDK获取玩家高清头像的URI地址为null

深度学习系列45:图像恢复综述

MachineLearning(12)- RNN-LSTM-tf.nn.rnn_cell

sklearn聚类算法实现

TCP标志信息

HuggingFace学习1:tokenizer学习与将文本编码为固定长度(pytorch)

如何评估回归模型的性能

ROS入门之使用命令行工具控制小海龟移动
