[Python]-torchvision.transforms模块-图像预处理

人工智能117

PyTorch框架中常用torchvision模块来辅助计算机视觉算法的搭建,transforms用于图像的预处理。

from torchvision import transforms

预处理操作集合:Compose

rans = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize(mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225]) # imagenet
    ])

图像转Tensor:ToTensor()

这个操作会把 (H·W·C)范围在 [0,255]的PIL图像转换为 (C·H·W)范围在 [0,1]的torch.tensor。
不仅映射了图像,还将通道数放在前面。

[En]

Not only the image is mapped, but also the number of channels is put in front.

归一化处理:Normalize()

按通道对数据进行标准化,即减去均值,再除以方差,使其正态分布和收敛更快。

[En]

Standardize the data according to the channel, that is, subtract the mean, and then divide by the variance to make its normal distribution and converge faster.

数据范围: [-1,1]
其中mean和std是从数据集中得到的,比如 (mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225])这组数据就是从ImageNet中得到。

计算mean和std的代码:

#这里以上述创建的单数据为例子
data = np.array([
                [[1,1,1],[1,1,1],[1,1,1],[1,1,1],[1,1,1]],
                [[2,2,2],[2,2,2],[2,2,2],[2,2,2],[2,2,2]],
                [[3,3,3],[3,3,3],[3,3,3],[3,3,3],[3,3,3]],
                [[4,4,4],[4,4,4],[4,4,4],[4,4,4],[4,4,4]],
                [[5,5,5],[5,5,5],[5,5,5],[5,5,5],[5,5,5]]
        ],dtype='uint8)

#将数据转为C,W,H,并归一化到[0,1]
data = transforms.ToTensor()(data)
# 需要对数据进行扩维,增加batch维度
data = torch.unsqueeze(data,0)

nb_samples = 0.

#创建3维的空列表
channel_mean = torch.zeros(3)
channel_std = torch.zeros(3)
print(data.shape)
N, C, H, W = data.shape[:4]
data = data.view(N, C, -1)     #将w,h维度的数据展平,为batch,channel,data,然后对三个维度上的数分别求和和标准差
print(data.shape)
#展平后,w,h属于第二维度,对他们求平均,sum(0)为将同一纬度的数据累加
channel_mean += data.mean(2).sum(0)
#展平后,w,h属于第二维度,对他们求标准差,sum(0)为将同一纬度的数据累加
channel_std += data.std(2).sum(0)
#获取所有batch的数据,这里为1
nb_samples += N
#获取同一batch的均值和标准差
channel_mean /= nb_samples
channel_std /= nb_samples
print(channel_mean, channel_std)

其他操作

Resize:把给定的图片resize到给定的尺寸。

ToPILImage: 将torch.tensor 转换为PIL图像。

CenterCrop:以输入图的中心点为中心做指定size的裁剪操作。

RandomCrop:以输入图的随机位置为中心做指定size的裁剪操作。

RandomHorizontalFlip:以0.5概率水平翻转给定的PIL图像。

RandomVerticalFlip:以0.5概率竖直翻转给定的PIL图像。

RandomResizedCrop:将给定图像随机裁剪为不同的大小和宽高比,然后缩放所裁剪得到的图像为制定的大小(有一个参数n)。

Grayscale:将给定图像转换为灰度图像。

RandomGrayscale:将图像以指定的概率转换为灰度图像。

FiveCrop: 从一张输入图像中裁剪出5张指定size的图像,包括4个角的图像和一个中心。

TenCrop:剪出10张指定size的图像。做法是在FiveCrop的基础上,再将输入图像进行水平或竖直翻转,然后进行FiveCrop操作,这样一张图像可得到10张crop图像。

Pad:对给定图像的所有边用的"padding"个像素用"fill"值填充。

ColorJitter:修改图像的亮度,对比度,饱和度和色度。

Lambda:做其参数指定的变换。

Original: https://www.cnblogs.com/camilia/p/15960636.html
Author: CAMILIA
Title: [Python]-torchvision.transforms模块-图像预处理