6.线性回归的简单评价指标

人工智能74
  • 均方误差(MSE)

[\mathrm{MSE}=\frac{1}{N}\sum_{i=1}^{N}(\hat{y}^{(i)}-y^{(i)})^2 ]

  • 均方根误差(RMSE)

[\mathrm{RMSE}=\sqrt{\mathrm{MSE}} ]

  • 平均绝对误差 (MAE)

[\mathrm {MAE}=\frac{1}{N}\sum_{i=1}^N||\hat{y}^{(i)}-y^{(i)}|| ]

  • (R^2)

[\begin{align} R^2 &=1-\frac{\sum_{i=1}^{N}(\hat{y}^{(i)}-y^{(i)})^2 }{\sum_{i=1}^{N}(\bar{y}-y^{(i)})^2 } \ &=1- \frac{\mathrm{MSE}}{\mathrm{Var{(y)}}} \end{align} ]

  • sklearn中的 metrics模块提供了以上的评价指标方法
  • 平均绝对误差:mean_absolute_error( )
  • 均方误差:mean_squared_error( )
  • (R^2)得分:r2_score( )

Original: https://www.cnblogs.com/bestwangyulu/p/16391569.html
Author: Wang-YL
Title: 6.线性回归的简单评价指标